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ABSTRACT 
The question of which algorithm is best used for the solution 
of normal equations with different structures has been investi 
gated . The solution methods are direct solution for banded 
resp . banded - bordered matrices, a special direct solution tech 
nique for arbitrary sparse systems of equations and the method 
of conjugate gradients . The algorithms have been applied first 
ly to photogrammetric bundle adjustment with self -calibration, 
which leads to a banded - bordered matrix of the normal equations , 
and secondly to calculations of digital height models which are 
generated by a simple version of the method of finite elements 
and which lead to band matrices . 
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INTRODUCTION 

In bundle adjustment with self calibration (e.g. GRON 1976) 
and interpolation of di~ital height models by the method of fi
nite elements (EB~ER, REISS 197S) the resulting systems of nor
mal equations are sparse. A soarse system means that a larae 
number of coefficients are zero . The distribution of the non
zer os in a soarse matrix may be artitrarily. 

For such arbitrary sparse ~atrices,a soec1a1 direct solution 
algorithm was developed (GUSTAVSON 1972) . In the following the 
aoolication of this special technique in the field of photo
a~ammetrv will be discussed and compared first with ordinary 
direct solution for banded, respe ctively banded-bordered ~atri
ces and second with the iterative method of conjuaate gradient~ 

A reason for the investi0ations (namely to find out, which 
aloorithm needs less calculation time) was a former comparison, 
wh{ch was carried out by SCHEK, STEIDLER, SCHAUER (1977) in the 
field of oeodetic networks and of orestressed cable nets. Their 
results showed surorisinnlv fast solutions. In the case of 11 eo 
detic networks the structure of the matrix of the normal equa
tions is arbitrary sparse, in th e case of nrestressed cable 
nets it is a band matrix. At that time it was supoosed that 
band alaorithm may not be the best solution for banded systems . 
This assumption was suooorted by an investigation on the sub 
ject of bundle adjustment of SCHENK (1972), who suspected to 
obtai n a faster so 1 uti on us i no a so - c a 1 1 e d 11 coo r d i nate method II , 

than with convential solution techniques like the direct solu
tion with band alaorithm or the iterative method of conjugate 
grad i en t s ( C G ) . T ~ i s II coo r d i nate method II i s s i m i 1 a r to the 
above mentioned direct algorithm for soarse systems. 

STEIDLER (19 80) investiaated two fields of acolication, 
which are summarized in this paper . The first one is the ohoto
grammetric bundle adjustment with self calibration . The ~atrix 
of the normal equation in this case is banded bordered and usu
ally a direct solution alaorithm for banded bordered svstems 
or the iterative method of-CG was apolied. These method~ are 
comoared here with the direct technique for arbitrary sparse 
systems . Also the characteristics of the CG method are reaar
ded, when the number of control ooints is decreasina. To -
accelerat: the converqence 11 Scali nq 11 and 11 preconditioning" (me
t hods to 1mprove the condition of a matrix) have been aoolied. 

The second field of application is the generation of digi
tal heiqht models by a simple version of the method of finite 
elements, which leads to a very regular str ip matrix. Here 
also the direct solution algorithm for band matr i ces, the 
direct technique for arbitrary soarse matrices and the method 
of conjugate gradients are compared . The number and distribu
tion of reference points was changed for the CG calculations 
additionally. 

The main goal of the comparison was to find out, w~ich aloo 
tithm needed less calculation time. When calculating with di: 
rect solutions, the number of multiolications has been counted 
and compared with the calculation time, and also the number of 
nonzer o -ele~ents was considered. fts a secondary nroblem the 
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storage caoacity was reaarded, because if disc memory is avail 
able , storage capacity is not a great factor anymore . 

A DIRECT SOLUTION TECHNIQUE FOR LARGE ARBITRARY SPARSE SETS OF 
LI~EAR EQUATIONS. 

The first preble~ when dealing with arbitrary sparse matri
ces is the storage mode. It would be a poor solution to store 
the total matrix with its zero elements . Therefore, a soecial 
storage mode was suggested by GUSTAVSON (1972) . The matrix has 
to be set uo in the form of two vectors w~ich merely indicate 
positions and one vector which contains the numerical values of 
the matrix. A small example is shown at figure (1). 

Havina fixed the storaae mode one can start the solution of 
the syste~ : 

Ax = b. 

The solution itself is subdivided into three parts: 
( 

1 \ 
l I 

( 2 ) 

( 3 ) 

symbolic factorization ·t-~ith "reordering", 

numeric factorization; 

forward and backward substitution. 

Symbolic factorization means a decomoosition only with the in
dices of the matrix A into a oroduct A= L·U. 
L is the lower triangular matrix and U is the. upper trianqular. 
The result of the symbolic factorization gives the information, 
w h e r e " f i 1 1 - i n s " a r i s e i n t h e fa c t o r i z e d m a t r i x . I t i s \·t e 1 1 
known that after factorization, the structure of the ~atrix has 
changed in such a sense, that more non-zero elements have to 
be considered. To minimize the number of non-zero elements, 
and consequently to reduce computing time and storage require
ments, it is helpful to oerform a reordering scheme . Two possi
bilities have been investigated: 

( 1 ) 

( 2 ) 

Reordering of the matrix and the right - hand side such , 
that rows are sorted by increasing length . (ROWORD-
S C HE 1>1 E) . 

Do a svmbolic elimination and use as i - th oivot row 
that row of the remaining (n-i, n - i) updated matrix 
which leads to the minimal number of multiplications in 
the next factorization step . Because of symmetry this 
me an s a row w i t h m i n i m a 1 1 e n g t h . ( 0 P T 0 R D - S C H E 1'1 E ) . 

The ROWORD - scheme reauires less calculations, but the OPTORD 
scheme is generally more efficient . However, it also does not 
necessarily lead to the factorization with minimum fill -ins. 

The following example may clarify the storage mode and the 
symbolic factorization: 

703. 



Matrix A: 5 2 3 1 0 0 ol i s stored i n three vectors : 
4 0 0 2 0 1 

6 0 0 0 2 AN = 5 ' 2 ' 3 ' 1 ' 4 , 2 ' 1 ' 5 ' 2 , 3 ' 5 ' 3 ' 4 ' 1 

3 0 0 0 I JA = 1 ' 2 ' 3 . 4 ' 2 ' 5 ' 7 ' 3 ' 7 ' 4 ' 5 ' 7 ' 6 ' 7 
I i ~ symm . 5 0 3 ! 

4 ~J IA = 1 ' 5 ' 8 , 1 0 ' 11 ' 1 3 ' 1.1 ' 1 5 

FIGURE (1): Storage mode of a soarse matrix . 

AN contains the non-zero elements in row -wise order, JA con 
tains the corresoonding column subscripts and IA gives the in
dices of the first elements in each row. 

The numeric values , stored in AN are not needed for the symbo 
lic factorization. The first four elements of JA relate to the 
f i r s t r o VI • T h i s row can cause f i 1 1-i n s i n t h e sec on d o r t h i r d 
row : in the second row elements (2,3) and(2,4) may be created, 
if they do not exist already, likewise, an element (3,4) may 
be created in the third row. T~is orocess will be continued uo 
to the (n - 1)-th row. The result for our example is : 

JL = 1,2,3,4,2,~.~.s.7 ,3,~.§,7.4,~.z.5,7 ,6,7 

IL = 1 , 5,10,14 , 17 ,19,20 

JL and IL represent the symbolic soarse matrix after factoriza
tion. Fill-ins are underlined . 

In the next steo , the numeric factorization is oerformed, 
i . e. the numeric calculation of the triangular decomposition . 

The advantage of the separation of symbolic and numeric fac 
torization is the effect, that symbolic factorization is per 
formed only once, even with the calculation of non - linear 
systems of equations. The numeric factorization is comouted in 
each it eration . 

At the third step the forward and backward substitution 
follows : 

Ly 

Ux 
= 
= 

b 

y 

This can easily be done in a very short time and the seoaratio n 
from the numeric factorization is helpful, when calculating 
several riaht hand sides. If reorderina was realized in step 
(1), a back transformation must be executed . It should be poin 
ted out here that the above explained method requires a compu 
ter with virtual storage capacity to be really efficient . Other 
machines would need too long I/O - transport - times, if calcula
tion is not possible directly in core . 
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The method mentioned here is one of several versions: a very 
detailed survey with an extensive bibliography is ~iven hy DUFF 
(1976) . The other solution algorithm, direct solution for ban 
ded resP. banded-bordered matrices as well as the method of 
conjugate gradients are well known and not explained here . 

CO MPARISON OF THE SOLUTIO~ ALGORITH~S 

SCHEK, STEIDLER, SCH .4.UE£< (1977) nointec out, that the so 
lution with a direct alaorithm for sJars~ svstems is much 
faster than the method 6f conjusate ~radien~s, when calcula
tinq geodetic networks . T~ey investigated several qeodetic 
nets with arbitrarv soarse matrices of nor~al equations, and 
two prestressed cable nets with a band matrix of normal eaua 
tions. As suooosition was assumed that band alqorithm ~av not 
be the fastest so l ution for banded systems. This and a similar 
assumotion of SCHE~K (1972), who also thou0ht that alqorithms 
for banded matrices could be slower than direct techniques 
for soarse matrices, have ~een a cause of investigations of 
STEIDLER (1980) , which shall be reoorted here . 

a ) C 0 ~tiP A R I S 0 'l 0 F S 0 L ~ T I 0 N A L G 0 R IT H M S I :1 B U ~10 L E A 0 JUS p.1 EN T ':!IT H 
SELF CALIBRATION 

Two examples are used for the numerical investiaations. The 
three algorithms mentioned above , have been compared, and for 
the case of conjugate gradients the convergence rate was con
sidered, when control ooints have been thinned out. CG inclu 
des scalina and for critical cases also ore - conditioninq 
(EVANS, 19g7). The examoles have been calculated by the ·method 
of bundle block adjustment with self calibration . In comoarison 
to the method of independent models it is the mor e riaorous and 
more flexible method . The first of the two exa~oles i~ the well 
k now n t e s t ~ 1 o c k " 0 g E R S C.H '·I A 8 E :l" ( 0 E E P E ) . I t w a s f 1 own w i t h a 
ZEISS R~K A 15/23 camera at an image scale 1:28 000 . The sec
tion used in this test consists of 8 strios with 17 images 
eac~. giving 136 images altoaether . The forward overlao is 60% , 
the sidelap 20~ . This leads to a square for~ of the block and 
an ordering in or lateral to fliqht direction leaJs to about 
the same bandwidth of th e matrix of the normal equations . 
The size of the area is about 40 x 40 km2. 2000 imaoe ooints 
have been mea su red with a ZEISS PSK, the nu~ber of around 
points being 926. Two versions with different distr~butions of 
control points have been calculated, one with all availa~le 
3l5 points, a second with 46 . The fol l owing figure shows the 
distributions : 
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FIG URE (2) : Sect i on of testblock OBERSCH~ABE~ 

The second example is the cadastral block "MOOSACH" . It was 
fl own with a normal anale camera , ZE I SS RMK A 30/23 . Th e size 
of the area is 3 .1 x 2: 2 km2 and the image scale is 1:3300. 
The block cons i sts o f 11 strips , givi na 93 images altogethe r. 
27~0 image points have been observed with a ZEISS PSK . The 
forward ~nd sideward overlao is 60% . T~e number of ground
ooints is about 900 , the total number of control points is 25 
(15 in x ,y, 10 in X,'t,z). 
The followina fi ~ure shows the di stribu t ions of controls in 
the block MOOSACH . 
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FIGURE ( 3 ) : •0 

·c. 
0 ~ 

cadastral block "'AOOSACH ;o 0 

_, 

~ 

+ projection cente r s '" 
6 control points i n x,y,z 0 

0 control po i nts i n x , y o· 

The si ze of t he blocks was chosen in such a way, that it was 
poss i ble t o calculate them in ce ntr al memory, because carts 
o~ the in vestigations ha d to be calculated at CY3ER 175 and 
TELEFUNKEN TR 440, which are not equipoed with virt ual storaae . 
Th e unkn owns of t he ground coordinates have been eli~inated. 
The resu lt i ng r educed matrix of the normal equations i s banded 
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1<1 i t h v a r 1 1 n g b a n d "' i d t h ; i f b u n d 1 e a d j u s t me n t '.<~ i t h s e 1 f c a 1 i -
bration is performed, the matrix will be banded - bordered , be 
cause the additional parameters are additiona l unknowns and 
usually ordered at the bo r der of the mat ri x . For ~lockinva -
r i a n t p a r a me t e r s t h i s _ b o r d e r '•'~ i 1 1 b e f u 1 1 y o o p u 1 a t e d . 

The orogram used for the investigations .is ~BOP (~Unchene r 
BUndelorientierung ~it zus~tzlichen Parametern) . It was deve 
looed by GRO N (1976) . For self calibration a set of 12 block 
invariant and nearly orthogonal additional parameters was 
chosen (EBNER 1976). 

The number of remaining unknowns in the case 03ERSCHWABEN 
was 328, the bandwidth about 100 olus the border with 12 ele 
ments . The number of elements within the band and the border 
was 94000, of which only 40500 were non-zero . 
The initial values of the imaoe coordinates and orientations 
have been calc ul ated with :moP. 

The following table (1) shows the result of the comoa ri so n: 
(all symbolic calculations were performed with the indices of 
(6 x 6) submatrices. in order to r educe the i~dex calcula 
tions) . The calculations have been comp~ted at IBM 370/ 14 5 
comouter. 

l 3M J 71 : ·~ 5 l ) r. 2 ~ J i 
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T .~ B L E ( 1) 

Figure (4) shows the structure of the normal eauations after 
factorization with band algorithm and with the sparse tech -
niaue . 
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I t is obvious that the band algorithm needs the least number 
of multiplications, althouqh the number of non - zero elements 
is nearly equal to that of the soarse techniques . The calcu 
l ation time is reduced in the same orooortion of the reduction 
of the number of multiPlications . Further the "band" storaoe 
mode needs not as much. storage as the "spars~" mode, because 
the latter wo r ks with indices . 

The second example MOOSACH leads to a system of normal 
equations with remaining 570 orientation unknowns . The band 
width is about 100 on averaae plus the 12 elements of the bo r 
der . The number o f elements within the band and the border is 
58100, with only 38300 non - zero elements. Table (2) shows the 
result of the comoarison . The calculations have been comouted 
at I3M 370/145 computer . 

"actor~zat1•Jn nn) sa100 

1n :. 
~ '"'!l),,~l.~Jl 

'l iJmOer Jf nu1t1· 
1l~ca.cons 

1'1U 1 f: 

:~~~ CPU·'iec. .9A 

~torane .:JpdCl":.y 'iO '< 

·.,ora s J 

7 4500 

~ . 2 g 

5. l9 •1o 

l. ~ 7 

:Ho 

1 )2 

: 'iO ' 

TABLE (2) 
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: ~2 

i Jl ., 0 

: .lJ 

; l g 

i.ll 

! "5 ( 

I 

In this case again band algorith~ is suoerior . Only half of 
the calculation time and half of the number of multiolications 
than for the soarse technique is needed. The number of non
zeros after factorization is much less . The storage require 
ment of the band alqorithm is less than the half of the soarse 
algorithm . 
Fi0ure (5) shows the structure of the matrix of the nor~al 
equations after factorization with band and soarse method. 

B,ll,ND 

FIGURE (5) 
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The next comparison is done between bandalgorithm and the 
method of conjugate gradients . 

The first example (OBERSCHWABEN) is shown in the table (3) 
with the version of all available 335 control points . The cal
culations have been performed at TR 440 computer. 

m t4o 
'fU • ) 28 

outer , teracians 

·:G-1 terat1ons 

time (C?U-'iec.i 

'land- nethod ~Jf ::Jnjuqate 
.ilqarlthR~ grJdlents i':Gi 

110 

TABLE (3) 

14, ~s. sz. ~6 
r .. ts 7 

10 25 

One can see that the solution with CG is reached after 157 CG
iterations in four outer iterations for the non-linear problem 
in 1025 CPU - seconds. With the band algorithm the final solu
tion was obtained after two outer iterations in 750 CPU - sec. 
Outer iterations mean the iterations to solve the non-linear 
problem . 
The same example was also calculated in a second version with 
46 control ooints. Final convergence could not be reached 
with CG, even though preconditioning was additionally used. 
This is one of the reasons to reject the CG-method for solving 
systems with poor control points. 

The second example (MOOSACH) is shown in the table (4). The 
calculations have been performed at CYBER 175 computer. 

~YSER ~75 
~u , s1o 

·Juter 1 terat1ons 

O:G- 1 terJ t ions 

!.1me ~CPU-sec.) 

Jdnd- :nethod -lf :on)uqac.e 
J.l:JOrltnrn ,lraaients (CG) 

20 

180. i80. . 130 
[. 20•180 • 11600 

32 L300 

TABLE (4) 

I~ this case it was not possible to achieve a solution with 
CG in a reasonable time; after 20 outer iterations and 1800 
CPU - seconds the required accuracy was not attained, in the 
other case the bandalgorithm needed two outer iterations and 
a calculation time of 82 CPU - seconds . 

The conclusions of the above investigations in a comprised 
form: 
- Direct techniques for sparse matrices are not superior to 
a band a l gorithm . The band structure will be destroyed and 
not even the OPTORD sorting leads to less fill-ins in compa 
rison to the band method. An other Point is that the nu~ber 
of multiplications are increasing much more than the number 
of fill - ins. Here one can see that the relation number of mul 
tiplications and number of fill-ins are not prcoortional . 

- The method of conjugate gradients is inferior to the band 
algorithm . It needs more calculation time and it is not sure, 
that convergence can be attained. Especially if the systems 
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are not equipped with a great nu~ber of controls, it is pos 
sible that no converqence will be obtained, even if scalin~ 
and preconditioning is applied . 

b) COMPARIS0N OF THE SOLUTION ALGORITHMS AT THE GENERATION OF 
D I G IT A L HE I G H T ~1 0 0 E L S 8 Y THE '1 E T H 0 D 0 F F PI I T E E: L EM E ~~ T S 

One of several oossible ways to generate digital hei0ht mo 
dels was sug(_Jested by EB~!Eq in 19-78 . It is based on the fini 
te element ~ethod and leads to a proble~ o~ least squares ad 
justment . The occuring system of normal e~uations has a rigo 
rous regular band structure, but within the band it is very 
sDarse . This fact was the reason to co~oare the above descri
bed solution algorithms in addition to the co~oarisons of the 
irregularly shaped band ~atrices, which result from the 
bundle adjustment with self calibration . 

First aoolications of the heiaht interoolation by finite 
elements have been oresented by EBNER and REISS in 1973 and 
a m i n i - c o rm u t e r p r o g r a m s y s t e m c a 1 1 e d " H I F I " \•1 a s o r e s e n t e d 
by E3~ER, HOF~ANN - WELLENHOF, REISS and STEIDLER in 1930, 
where two types of finite elements alternatively have been 
aoolied, a bicubic and a bilinear one. 

For the following comparisons the bilinear intercalation 
only was investiaated. The formulation of the interoolation 
is reported in the above ~entioned description of "HIFI", and 
therefore it will be described very brie~ly here, only in 
order to explain the resulting structure of the matrix of the 
normal equations. 

Starting from arbitrarily distributed reference points the 
unknown hei0hts at the nodes in a renular square grid are to 
ce co~outed, (m =number of grid rows, n =number of grid 
columns, m·n = number of unknowns, see fiaure 6a) . The ter
rain surface is aooroximated bv a larae number of bilinear 
finite surface elements, which- are linked to0ether at the 
nodes and are continuous but not differentiable in the first 
derivation. 

In order to receive a surface of minimum curvature throuah 
the given reference points (apart from eventual filtering)
at every grid point curvature equations are formulated in 
four discrete directions: the two of the coordinate axes and 
the two of the diagonals (figure F,a). The curvature equa
tions are linear and contain the difference of two adjacent 
slooes-related to the distance one - which can be interore
ted as a numerical anoroach of the curvature at the node 
(i ,j). For examole the eauation of the curvature of the x
direction at node (i,j) is: 

( X ) 
v 

i 'j 
=h . 1 . - 2 h . . +h. 1 . - 0; ,_ ,J 1,J 1+ ,J 

7:1.0. 



It forms an observation equation: the observation of the cur 
vature is assumed to be zero witn a small deviation . v .. 

1 ' J bein0 t~e according residual. 
The reference points contribute additional equations . They 

contain the four surrounding unknown grid heights in such a 
way that the reference point lays on the surface (apart from 
eventual filtering). They also are linear and do only cause 
additional contributions to already existing unknowns (EB~E~ 
et a1.19~0). This means the structure of the normal equations 
is deoendent only on the eauations of curvature (figure 6) . 
The bandwidth is (2n + 3) and is orooortional to the number 
n of nodes in one row. Every normal equation however contains 
only uo to 9 non-zero elements (fiaure 5b). 

a ) 
I 
I I 

I I 

i : 1 

i:m 

i ; 1 

j :n 

b ) 

FIGURE 6: a) m bv n arid of a DH:1 with the connec:"::ions of 
a ooint,(i,j) 

b) structure of the matrix of normal equations 
resultinG from a 7 x E orid. 

This stri~ matrix stands in contrast to the much less re
oular banded-bordered matrices of the bundle adjustment with 
self calibration. gecause of this reason the comparison bet 
ween the solution algorithms seems to be very interesting. 

The test material which was used for the comparisons of the 
algorithms, are three data sets, namely VER~AGT 1, VERNAGT 2 
and OSERGURGL . VEq~AGT 1 contains 850 reference ooints, 31 x 
11 unknown heights and is a section of VERNAGT 2, where 
ooints of intersection between contour lines and grid lines 
were d~gitized. In VERNAGT 2, which covers an area of 3.2 x 
3.4 km~ and with a maximum heiaht difference of 700 m, 6200 
reference points have been obs~rved . The number of unknowns 
is 65 x 69 = 4485. The grid spacing is 50 m. Figure 7 shows 
the distri~utian of the riference noints, which have been 
used, and the contour lines which were derived from the in 
tercalated JHM. They have been drawn automatically using a 
olottinq routine of the Leibniz-Rechenzentrum ~unich at a 
d r u m o 1 o t t e r II C A L c a ~1 P 9 3 6 s II • 

7:1:1. 



FIGURE ( 7 ) 

The digital height model OSERGURGL covers an area of 750 x 
500 ~2 The grid spacinq is 12.5 m. The reference ooints have 
been observed along contour lines and the number of unknowns 
is 61x41 = 2501. The comoarison between "soarse techniques" 
and "band al9orithms" is illustrated by the ~xamole VERNAGT 1 
They have been calculated at an IBM 370/145 computer. Table 
(5) shows the results. 

~----------~-------r----------------------

'/E~NAGT l 
:n : 31 
, • ll 
1U • 341 
1V = 2700 

'10n-zeros l ft er 
fac~orization ~ ,n) 

.1umoer of 11Uiti
ol'cations 

:alc~lat:on 

s:oraqe :a a . 
wor"lsl 

tec~niques for soarse ~atr'ces 

·:and- sor"f:~d by 

al~or<t~m JPTQRO 

3032 12 239 

:o 
2: ( 

nv = number of non-zeros before factorization 
nu = number of unknowns 

TABLE (5) 

Figure (8) shows the structures of the matrix of the nor
mal equations with band algorithm and with direct techniques 
for soarse matrices after factorizatton. 

6 A N D 

FIGURE (3) 
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One can see clearly t~at usina the bandalaorithm the band 
becomes full . In the soarse case the bandstructure was 
co~oletely dest royed. 

The comoarison between the bandalqorithm and the method of 
conjuqate aradients is illustrated using all three sets of 
data 1n table (6) (calculated at a CDC CYBER 175): 

band- CG with s ca 11 nq time 
1a ta ,. t unlcn~Jwns nv a l 'lOr1 thm cG 

time onu1t1 nn time I.G-i I:! rat. ElMebt\nd 

I 
V€R~AGT 1 31 ' 11• u~o I 0.13 J. ;1 ~on 0. 19 66 1 ,16 

341 I •io 

65 19 · 39165 i H.27i <4.516189301168 
I 

855 J. 21 ~ON AGT 2 ' I 4485 i "i 0 

OBERGURGL 61 ' q. 215 99 11.51 9,1207261 20.4 I Z26 1.77 
2501 "1 0 

nv = non-zeros before factorization 
nn = non-zeros after factorization 

TABLE (5) 

I 

In all three cases the band alaorithm was the fastest. The 
method of CG included scaling. It should be pointed out here, 
that with CG an accuracy of about 3 mm was attained, comoared 
with the direct solution. This accuracy may be very hinh for 
digital heiaht ~odels. The calculation time in the poorest 
case is three times longer than with band alaorithm. It may 
be reduced if lower accuracy would be sufficient. In the case 
of saving storage ca~acity it can be stated, that the method 
of conjuaate gradients needs much less stora~e, namely twice 
the number of non-zeros before factorization, the band algo
rithm needs soace for the num5er of non-zeros after factori
zati on : but when usin9 discs the storage may no+:oe very 
irnoortant. 

To show the convergence of the method of conjugate gradi
ents several versio ns of VER~AGT 2 have been comouted.The re
ference point situation was chanqed t this means the number of 
points has been successively reduced until only one remained 
at last. 

Table (7) shows the results: 

number :Jf number of calculation t i :ne 
reference J a i ~ ts CG-i ter~ti ons (CPU~sec.) 

6 24 7 ~c;-

j '::> 158 
3:21 38 5 ; 7 3 
15 6 2 912 ~7'3 

1249 o?~ 
- -.J l'30 

lJ·1l 938 13 2 
7'31 95 9 135 
6 24 97l 1S8 
416 10 59 2'l2 
249 1157 227 
l 2 !1 1309 254 

5 i 1546 32: 
30 2122 11 2 
~ l 2751 -'-:).)/ 

3 23 6 i 56 1 
1 235 9 --, '0. 
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A solution was reached in each example, even in the singu 
lar case wit~ only one reference roint (CG - method oives the 
~inimu~ norm solution in singular cases) . In this case the 
solution was reached after 2S6J iterations, when theoretically 
4500 (= number of unknowns) should b~ expected . 

Finally it can )e stated that for the r:'eneration of dir:::i 
t a 1 he i g h t rn ode 1 s the a o o 1 i cat i on of '' so a r s e " tech n i o u e s 
seems to be rather inefficient . This statement may be re 
stricted because of the comoarison of only one exa~ole, but 
due to the same structures of any matrix of nor~al eauations 
the conclusion may be advocated . 

The band algorithm leads to the fastest solution, even 
faster than CG, especially in the ooorer cases with only few 
reference ooints. But using CG there are no difficulties 
with convergence in any case . Regardin0 the storage caoacity, 
CG needs the least, because only the non - zero elements before 
factorization have to be stored, contrary to band and soarse 
technique, where the non-zeros after factorization are 
needed. But this fact does not seem very imoortant, when 
enough soace on disc is available. 

c 0 N c L u s I 1] ~~ 

It was oointed out that direct techniaues for arbitrary 
soarse matrices are inferior to the direct solution for band 
matrices in the case of recular structur~s, ~ow they aooear 
at bundle block adjustment with self calibration and at gene 
ration of dioital heioht models by the method of finite ele
~ents. The soarse techniques needed ~ore time and more stor
aae caoacity for the investioated examples. Sesi~es they de
mand a comouter with virtual storaae capacity. 

The method of conjuaate aradients ~as to be reiected in the 
case of bundle adjustment with self calibration, because con
veraence cannot be reached in every case, even not if scalinc 
and oreconditioning is aoolied . 

2etter results are obtained with CG at calculation o~ dioi
tal height models . Indeed band alaorith~ was faster, espe -
c i a 1 1 ~r i n t h e c a s e s \'I i t h o n 1 y f e v1 r e f e r e n c e o o i n t s , b u t c o n -
vergence could be attained in all cases. 

: ~ o r e s t o r a a e c a p a c i tv i s n e e d e d i f c a 1 c u 1 a t i n a \'t i t h b a n d 
algorithm, because in case of CG cnly the non - zeros before 
factorization are needed. But this point should not be over 
estimated because today nearly all comouters are equinped 
with disc storaae capacities . 

The results obtained in this investir:ation confirm t1e con
ventional usage of band alaorithm in bundle adjust~ent and 
seem to be verv important because this fact could not be an
ticioated. 
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