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ABSTRACT

The question of which algorithm is best used for the solution
of normal equations with different structures has been investi-
gated. The solution methods are direct solution for banded
resp. banded-bordered matrices, a special direct solution tech-
nique for arbitrary sparse systems of equations and the method
of conjugate gradients. The algorithms have been applied first-
ly to photogrammetric bundle adjustment with self-calibration,
which leads to a banded-bordered matrix of the normal equations,
and secondly to calculations of digital height models which are
generated by a simple version of the method of finite elements
and which 1e§d to band matrices.
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INTRODUCTION

In bundle adjustment with self calibration (e.g. GRON 1978)
and interpolation of digital height models by the method of fi-
nite elements (EBNER, REISS 1978) the resulting systems of nor-
mal equations are sparse. A sparse system means that a larae
number of coefficients are zero. The distribution of the non-
zeros in a sparse matrix may be artitrarily.

For such arbitrary sparse matrices,a special direct soluticn
algorithm was developed (GUSTAVSON 1972). In the following the
application of this special technique in the field of photo-
grammetry will be discussed and compared first with ordinary
direct solution for banded, respectively banded-bordered matri-
ces and second with the iterative method of conjuaate gradients.

A reason for the investiqations (namely to find out, which
algorithm needs less calculation time) was a former comparison,
which was carried out by SCHEK, STEIDLER, SCHAUER (1977) in the
field of geodetic networks and of orestressed cable nets. Their
results showed surprisinaly fast solutions. In the case of qeo-
detic networks the structure of the matrix of the normal equa-
tions is arbitrary sparse, in the case of nrestressed cable
nets it is a band matrix. At that time it was supposed that
band alaorithm may not be the best solution for banded systems.
This assumption was suppborted by an investiqgation on the sub-
ject of bundle adjustment of SCHENK (1972), who suspected to
obtain a faster solution usina a so-called "coordinate method",
than with convential solution techniques like the direct solu-
tion with band alaorithm or the iterative method of conjugate
gradients (CG). This "coordinate method" is similar to the
above mentioned direct alaorithm for sparse svstems.

STEIDLER (1980) investigated two fields of apolication,
which are summarized in this paper. The first one is the photo-
qrammetric bundle adjustment with self calibration. The matrix
of the normal equation in this case 1s banded bordered and usu-
ally a direct solution algorithm for banded bordered systems
or the iterative method of CG was applied. These methods are
comoared here with the direct technique for arbitrary sparse
systems. Also the characteristics of the C5G method are regar-
ded, when the number of control points is decreasing. To
accelerate the convergence "scaling" and "preconditioning” (me-
thods to improve the condition of a matrix) have been abplied.

The second field of application is the generation of digi-
tal height models by a simple version of the method of finite
elements, which leads to a very regular strip matrix. Here
also the direct solution algorithm for band matrices, the
direct technique for arbitrary spnarse matrices and the method
of conjugate gradients are compared. The number and distribu-
tion of reference points was changed for the CG calculations
additionally.

The main goal of the comparison was to find out, which alao-
tithm needed less calculation time. When calculating with di-
rect solutions, the number of multiolications has been counted
and compared with the calculation time, and also the number of
nonzero-elements was considered. As a seconcdary problem the
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storage capacity was reagarded, because if disc memory is avail-
able, storage capacity is not a great factor anymore.

A DIRECT SOLUTION TECHMIQUE FOR LARGE ARBITRARY SPARSE SETS OF
LINEAR EQUATIONS.

The first problem when dealing with arbitrary sparse matri-
ces is the storage mode. It would be a poor solution to store
the total matrix with its zero elements. Therefore, a special
storage mode was suggested by GUSTAVSON (1972). The matrix has
to be set ubp in the form of two vectors which merely indicate
positions and one vector which contains the numerical values of
the matrix. A small example is shown at fiaqure (1).

Havina fixed the storaace mode one can start the solution of
the system:

Ax = b.

The solution itself is subdivided into three narts:

(

iy
(2) numeric factorization;
3)

(

) symbolic factorization with "reordering”,
forward and backward substitution.

Symbolic factorization means a decomposition only with the in-
dices of the matrix A into a oroduct A = L1,

L is the lower triangular matrix and U is the upper trianqular.
The result of the symbolic factorization cives the information,
where "fill-ins" arise in the factorized matrix. It is well
known that after factorization, the structure of the ratrix has
changed in such a sense, that more non-zero elements have to
be considered. To minimize the number of non-zero elements,

and consequently to reduce computing time and storaage require-
ments, it is helpful to perform a reordering scheme. Two possi-
bilities have been investigated:

(1) Reordering of the matrix and the right - hand side such,
that rows are sorted by increasing length. (ROWORD-
SCHEME) .

(2) Do a symbolic elimination and use as i-th pivot row
that row of the remaining (n-i, n-i) updated matrix
which leads to the minimal number of multiplications in
the next factorization step. Because of symmetry this
means a row with minimal length. (OPTORD-SCHEME).

The ROWORD-scheme reauires less calculations, but the OPTORD-
scheme is generally more efficient. However, it also does not
necessarily lead to the factorization with minimum fill-ins.

The following example may clarify the storage mode and the
symbolic factorization:
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Matrix A: |5 2 3 1000 is stored in three vectors:
2 01
00 2 AN = §,2,3,1,4,2,1,6,2,3,5,3,4,1
000 JA = 1,2,3.4,2,5:7,3:7.%4,8,7,6.7
symm. 50 3| | //1:25122225522222252:1/3
4 0 IA = 1,5,8,10,11,13,14.15%
3

FIGURE (1): Storage mode of a sparse matrix.

AN contains the non-zero elements in row-wise order, JA con-
tains the corresponding column subscripts and IA gives the in-
dices of the first elements in each row.

The numeric values, stored in AN are not needed for the symbo-
lic factorization. The first four elements of JA relate to the
first row. This row can cause fill-ins in the second or third
row: in the second row elements (2,3) and(2,4) may be created,
if they do not exist already, likewise, an element (3,4) may
be created in the third row. This brocess will be continued up
to the (n-1)-th row. The result for our example is:

JL

1,2,3,4,2,3,4,5,7,3,4,5,7,4,5,7,5,7,6,7
IL

1,5,10,14,17,18,20

JL and IL represent the symbolic sparse matrix after factoriza-
tion. Fill-ins are underlined.

In the next step, the numeric factorization is performed,
i.e. the numeric calculation of the triangular decomposition.

The advantage of the separation of symbolic and numeric fac-
torization is the effect, that symbolic factorization is per-
formed only once, even with the calculation of non-linear
systems of equations. The numeric factorization is computed in
each iteration.

At the third step the forward and backward substitution
follows:

Ly = b
Ux =y

This can easily be done in a very short time and the separation
from the numeric factorization is helpful, when calculating
several right hand sides. If reordering was realized in step
(1), a back transformation must be executed. It should be poin-
ted out here that the above explained method requires a compu-
ter with virtual storage capacity to be really efficient. Other
machines would need too long I/0O-transport-times, if calcula-
tion is not possible directly in core.

704.



The method mentioned here is one of several versions: a very
detailed survey with an extensive biblioaraphy is aqiven by DUFF
(1976). The other solution algorithm, direct solution for ban-
ded resp. banded-bordered matrices as well as the method of
conjugate aradients are well known and not explained here.

COMPARISON OF THE SOLUTION ALGORITHMS

SCHEK, STEIDLER, SCHAUER (1977} nointed out, that the so-
lution with a direct algorithm for snarse svstems 1is much
faster than the method of conjugate aradients, when calcula-
ting geodetic networks. They investigated several geodetic
nets with arbitrary soarse matrices of normal equations, and
two prestressed cable nets with a band matrix of normal eaua-
tions. As supposition was assumed that band algorithm may not
be the fastest solution for banded systems. This and a similar
assumntion of SCHENK (1972), who also thought that algorithms
for banded matrices could be slower than direct techniques
for sparse matrices, have bheen a cause of investigations of
STEIDLER (1980), which shall be recorted here.

a) COMPARISON CF SOLUTIOMN ALGORITHMS IN BUMDLE ADJUSTHMENT WITH
SELF CALIBRATION .

Two examples are used for the numerical investigations. The
three algorithms mentioned above, have been compared, and for
the case of conjucate gradients the convercence rate was con-
sidered, when control points have been thinned out. CG inclu-
des scaling and for critical cases also pre-conditioning
(EVANS, 1967). The examples have been calculated by the method
of bundle block adjustment with self calibration. In comparison
to the method of independent models it is the more ricorous and
more flexible method. The first of the two examnles is the well
known testhlock "OBERSCHYWABEMN" (OEEPE). It was flown with a
ZEISS RMK A 15/23 camera at an image scale 1:28 000. The sec-
tion used in this test consists of 8 stripns with 17 images
each, giving 136 imaces altcaether. The forward overlap is 50%,
the sidelap 20%. This leads to a square form of the block and
an ordering in or lateral to flight direction leads to about
the same bandwidth of the matrix of the normal equations.

The size of the area is about 40 x 40 km2. 2000 image points
have been measured with a ZEISS PSK, the number of around
points being 926. Two versions with different distributions of
control points have been calculated, one with all available
335 points, a second with 46. The following figure shows the
distributions:
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FIGURE (2): Section of testblock OBERSCHYABEN
The second example is the cadastral block "MOQSACH". It was
flown with a normal angle camera, ZEISS RMK A 30/23. The size
of the area is 3.1 x 2.2 xm2 and the imaqe scale is 1:3300,.
The block consists of 11 strins, aivinag 93 images altogether.
2770 image points have been ocbserved with a ZEISS PSK. The
forward dnd sideward overlan is 60%. The number of ground-
points is about 900, the total number of control points is 25
(15 in x,y, 10 in x,v,z).

The followina fiqure shows the distributions of controls in
the block MOOSACH.

| : a ° .
flight-direction ‘\ A I
| . : ‘ , :
FIGURE (3): o
cadastral block “MOOSACH® )
+ projection centers = '
o control points in x,y,z A
o control points in x,y o

The size of the blocks was chosen in such a way, that it was
nossible to calculate them in central memory, because parts
of the investigations had to be calculated at CYBER 175 and
TELEFUNKEN TR 440, which are not equipped with virtual storaae.
The unknowns of the ground coordinates have been eliminated.
The resulting reduced matrix of the ncrmal equations is banded
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with variing bandwidth; if bundle adjustment with self cali-
bration is performed, the matrix will be banded-bordered, be-
cause the additional parameters are additicnal unknowns and
usually ordered at the border of the matrix. For blockinva-
riant parameters this border will be fully populated.

The program used for the investications.is YBOP (Minchener
Biindelorientierung mit zusdtzlichen Parametern). It was deve-
loped by GRUN (1976). For self calibration a set of 12 block-
invariant and nearly orthogonal additional parameters was
chosen (EBNER 1676).

The number of remaining unknowns in the case O3ERSCHWABEN
was 823, the bandwidth about 100 plus the border with 12 ele-
ments. The number of elements within the band and the border
was 94000, of which only 4050C were non-zero.

The initial values of the imace coordinates and orientations
have been calculated with MBOP.

The following table (1) shows the result of the comparison:
(all symbolic calculations were performed with the indices of
(6 x 6) submatrices. in order to reduce the index calcula-
tions). The calculations have been computed at I8M 370/145
comnuter.

(3M 379 - 149 1) B2 33
Inknowns 1.2.!, -
S on=Teras St Fore bae | 79N0S tecnniques for soarse mnatrices
factorrzation=20534 | alqorytnm R0HWORD IPTARO
non-z2ros arter
‘actortzation ‘nn) 33942 184285 27:219
an.
o el {21 ) i 1.54 1.93
Tumber >f nuiti-
Jitcations i.J4 Mg 19.20 Mo 7,32 o
nult,
T R 3.2 s
time (PU-sec., 330 L1907 179
TTMe L, amediLE, < i
“ime, .| N Aeerd
itarage :apdcity % §
words ) 35 « 300 « 190 <

(1)

TABLE (1

Figure (4) shows the structure cof the normal eaquations after
factorization with band algorithm and with the sparse tech-
nique.

BAN OPTORD
-E B i -~
- = - 3
- - D e ,
‘: ':i i ' x;' Each OO]ﬂt
: oA TS 3 renresents
o i a 5 x b

submatrix

R G T

FIGURE (4)
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It is obvious that the band algorithm needs the Teast number
of multiplications, although the number of non-zero elements
is nearly equal to that of the sparse techniques. The calcu-
lation time is reduced in the same proportion of the reduction
of the number of multiplications. Further the "band" storage
mode needs not as much storage as the "sparse" mode, because
the latter works with indices.

The second example MOOSACH leads to a svstem of normal
equations with remaining 570 orientation unknowns. The band-
width is about 100 on averade plus the 12 elements of the bor-
der. The number of elements within the band and the border is
58100, with only 33300 non-zero elements. Table (2) shows the
result of the comparison. The calculations have been computed

at I3M 370/145 computer.

(3M 370 ¢ 15§ i i3 2)
inknowas 370 = = T
T Teron e farafau | SAMOF “ecnnigues “or spar<e natrices
factorrzactron=38356 !aigorichm ROMORD JPTORD
1on-zeros irter
factorizacion aa) $3100 74500 71100
LIGETRS
e kL 20 4 13 i 4 28 e 22
sumber f nuity-
slicactons 1.37 %ia 3.39 o 3.37 "o
nyit,
Fooict a aumml 1 2 .
L R L 122 1533
time 'CPU-sec.: L3R 380 379
{1me,
Tt il b B
Tre 3 1.32 31
storaade capacity 30 x 150 145 ¢
woras |
; ~
TABLE (2)

In this case again band alagorithm is superior. Only half of
the calculation time and half of the number of multiolications
than for the sparse technique is needed. The number of non-
zeros after factorization is much less. The storage require-
ment of the band algorithm is less than the half of the sparse
algorithm.

Fiqure (5) shows the structure of the matrix of the normal
equations after factorization with band and sparse method.

BAND OPTORD

. Fai Y i - Y = each point
: S AR e represents
- g : - a 5 x 6

3 = : : ' submatrix

FIGURE (5)
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The next comparison is done between bandalgorithm and the
method of conjugate gradients.

The first example (OBERSCHWABEN) is shown in the table (3)
with the version of all available 335 control points. The cal-
culations have been performed at TR 440 computer.

TR 340 hand- method of Zonjugate
qU = 328 ilgarithm gradients %G5}

outer t1Ctarations 2 1

ZG-1terations - 14, 45, 52, 46
E=l57

time (CPU-sec.; 750 10258

TABLE (3)

One can see that the solution with CG is reached after 157 CG-
iterations in four outer iterations for the non-linear problem
in 1025 CPU-seconds. With the band alagorithm the final solu-
tion was obtained after two outer iterations in 750 CPU-sec.
Outer iterations mean the iterations to solve the non-linear
oroblem.

The same example was also calculated in a second version with
46 control points. Final converaence could not be reached

with CG, even though preconditioning was additionally used.
This is one of the reasons to reject the CG-method for solving
systems with poor control points.

The second example (MOOSACH) is shown in the table (4). The
calculations have been performed at CYBER 175 computer,

ZY3ER 179 Jand- method of Zonjugacte
Yy s 370 1lgorrthm araaients {LG)

Juter ivteracions 2 20

CG-rterations - 80, 380. . . 530
T = 20530 = 11600
time :CPU-sec.) 32 1300
TABLE (4)

In this case it was not possible to achieve a solution with
CG in a reasonable time; after 20 outer iterations and 1800
CPU-seconds the required accuracy was not attained, in the
other case the bandalgorithm needed two outer iterations and
a calculation time of 82 CPU-seconds.

The conclusions of the above investigations in a comprised
form:
- Direct techniques for sparse matrices are not superior to
a band algorithm. The band structure will be destroyed and
not even the OPTCRD sorting leads to less fill-ins in compa-
rison to the band method. An other point is that the number
of multiplications are increasing much more than the number
of fill-ins. Here one can see that the relation number of mul-
tiplications and number of fill-ins are not prcoortional.

- The method of conjugate gradients is inferior to the band-
algorithm. It needs more calculation time and it is not sure,
that convergence can be attained. Especially if the systems
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are not equipped with a great number of contreols, it is pos-
sible that no convergence will be obtained, even if scaling

and preconditioning is applied.

NERATICON OF

b) COMPARISON OF THE SOLUTION ALGORITHMS AT THE N
IT LEMENTS

DIGITAL HEIGHT MODELS BY THE METHOD OF FIN

-
Go
c
g

E

One of several possible wavs to generate digital height mo-
dels was sugqgested by EBMER in 1978. It is based on the fini-
te element method and leads to a problem of least squares ad-
justment. The occuring system of normal eauatinns has a rigo-
rous reqular band structure, but within the band it is very
snarse. Tnis fact was the reason to compare the above descri-
bed solution algorithms in addition to the compnarisons of the
irreqularly shaped band matrices, which result from the
bundle adjustment with self calibration.

First applications of the heiaght interpolation by finite
elements have been oresented by EBNER and REISS in 1978 and
a mini-computer program system called "HIFI" was oresentad
by EBNER, HOFMANN-WELLENHOF, REISS and STEIDLER in 1990,
where two types of finite elements alternatively have been
aonlied, a bicubic and a bilinear one.

For the following comparisons the bilinear interpolation
only was investigated. The formulation of the interpclation
is reported in the above mentioned description of "HIFI", and
therefore it will be described very briefly here, only in
order to explain the resulting structure of the matrix of the
normal equations.

Starting from arbitrarily distributed reference points the
unknown heiahts at the nodes in a reqular square grid are to
te computed, (m = number of grid rows, n = number of arid
columns, m+.n = number of unknowns, see ficure €a). The ter-
rain surface is aporoximated by a large number of bilinear
finite surface elements, which are linked toagether at the
nodes and are continuous but not differentiable in the first
derivation.

In order to receive a surface of minimum curvature through
the given reference points (apart from eventual filterinag)
at every arid point curvature equations are formulated in
four discrete directions: the two of the coordinate axes and
the two of the diagonals (figure 6fa). The curvature equa-
tions are linear and contain the difference of two adjacent
slopes-related to the distance one - which can be interpre-
ted as a numerical approach of the curvature at the node
(i,j). For examole the eguation of the curvature of the x-
direction at node (i,j) is:
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[t forms an observation equation: the observation of the cur-
vature is assumed to be zero witn a small deviation. Vs i
being the according residual. ’

The reference points contribute additional equations. They
contain theée four surrounding unknown arid heights in such a
way that the reference point lays on the surface (apart from
eventual filtering). They also are linear and do only cause
additional contributions to already existing unknowns (EBMER
et al.1930). This means the structure of the normal equations
is dependent only on the ecuations of curvature (fiqure 6).
The bandwidth is (2n + 3) and is proportional to the number
n of nodes in one row. Every normal equation however contains
only up to 9 non-zero elements (fiaure 5b).
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FIGURE 6: a) m by n grid of a DH! with the connections of
a noint (i,3)
b} structure of the matrix of normal eguations
resulting from a 7 x € arid.

Tnis strin matrix stands in contrast to the much less re-
gular banded-bordered matrices of the bundle adjustment with
self calibration. Because of this reason the comparison bet-
ween the solution algorithms seems to be very interesting.

The test material which was used for the comparisons of the
algorithms, are three data sets, namely VERMAGT 1, VERNAGT 2
and OBERGURGL. YERNAGT 1 contains 350 reference points, 31 x
11 unknown hejghts and is a section of YERMAGT 2, where
points of intersection between contour lines and arid lines
were d;gitized. In VERNAGT 2, which covers an area of 3.2 x
3.4 km® and with a maximum heiaght difference of 700 m, €200
reference points have been observed. The number of unknowns
is 65 x 69 = 4485, The arid snacing is 50 m. Ficure 7 shows
the distribution of the reference noints, which have been
used, and the contour lines which were derived from the in-
terpolated OHM. They have been drawn automatically using a
plotting routine of the Leibniz-Rechenzentrum Munich at a
drum plotter "CALCOMP 936 S".
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The _digital height model OBERGURGL covers an area of 750 x
500 m2. The grid spacing is 12.5 m. The reference points have
been observed along contour lines and the number of unknowns
is 61x41 = 2501. The comparison between "sparse techniques"
and "band algorithms" is illustrated by the example VERNAGT 1
They have been calculated at an IB3M 370/145 computer. Table
(5) shows the results.

YERNAGT 1 )
mnoo= 31 tecnnigues for soarse matrices
n o= 11

sand- sorted by
nu = 341
nv = 2700 alqorithm JPTORD
non-zeros after
factorization ‘nn) 3032 12 239
Aumoer of multi- ; ~
olications 91254 i 514 150
calculation )
time /CPY-sac.) 7 30

RS 2E %

storage cao.
woras )

number of ncn-zeros before factorization
number of unknowns

i

nv
nu

TABLE (5)

Figure (8) shows the structures of the matrix of the nor-
mal equations with band algorithm and with direct techniques
for sparse matrices after factorization.

faxd 0PTAORD
oo( . 400
500
FIGURE (3) o
1o
B 100 K ﬂﬁ 10 400
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One can see clearly that using the bandalgorithm the band
becomes full. In the sparse case the bandstructure was
completely destroyed.

The comparison between the bandalgorithm and the method of
conjugate aradients is illustrated using all three sets of
data in table (6) (calculated at a CDC CYBER 175):

band- ¢ time
data set unknowns nv alqorithm G6 WALLH seRiing 4
time mult’ an time | CG-iterat. E”"eband
]
VERNAGT | 31 x 1= 21100 0.13t 2.1] 3032 |0.19 66 1.48
Jja1 410
YERNAGT 2 £5 x §9=| 39165 52.27|44,5|618930| 168 855 3.21
4485 410
O0BERGURGL 61 x 41={ 21599 | 11.51 9 |207261]20.4 225 1.77
2501 410 ‘
nv = non-zeros befeore factorization

non-zeros after factorization
TABLE (9)

nn

In all three cases the band algorithm was the fastest. The
method of CG included scalina. It should be pointed out here,
that with CG an accuracy of about 3 mm was attained, compared
with the direct solution. This accuracy may be very hiah for
digital heicht models. The calculation time in the poorest
case is three times longer than with band algorithm. It may
be reduced if lower accuracyv would te sufficient. In the case
of saving storage capacity it can be stated, that the method
of conjuagate gradients needs much less storane, namely twice
the number of non-zeros before factorizaticn, the band algo-
rithm needs space for the number of non-zeros after factori-
zation: but when using discs the storage mav not be very
important.

To show the convergence of the method of conjucgate aradi-
ents several versions of VERMAGT 2 have been compnuted.The re-
ference point situation was chanaed, this means the number of
points has been successively reduced until only one remained
at last.

Table (7) shows the results:

number of number of calculation time
reference points CG-iterations {(CPU-sec.)

65247 €5 163
3124 3358 173
1562 312 1783
12489 323 130
1041 328 132
731 3539 135
524 371 138
415 1053 202
249 11587 227
124 1209 254
31 1548 321
30 2122 112
11 2754 337
3 2861 361
1 23839 561
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A solution was reached in each example, even in the singu-
lar case with only one reference point (CG-method aives the
minimum norm solution in sincular cases). In this case the
solution was reached after 2862 iterations, when theoretically
4500 (= number of unknowns) should be exnected.

Finally it can be stated that for the ceneration of diqgi-
tal height models the aoplication of "sparse" techniques
seems to be rather inefficient. This statement may be re-
stricted because of the comparison of only one examnle, but
due to the same structures of any matrix of normal equations
the conclusion may be advocated.

The band algorithm leads to the fastest solution, even
faster than CG, especially in the poorer cases with only few
reference points. But using C5 there are no difficulties
with convergence in any case. Regardina the storage capacity,
CG needs the least, because only the non-zero elements before
factorization have to be stored, contrary to band and soarse
technique, where the non-zeros after factorization are
needed. But this fact deces not seem very important, when
enough space on disc is available.

CONCLUSION

It was pointed out that direct techniaues for arbitrary
sparse matrices are inferior to the direct solution for band
matrices in the case of recular structures, how they aonear
at bundle block adjustment with self calitraticn and at gene-
ration of diaital heiaht models by the method of finite ele-
ments. The snarse technigues needed more time and more stor-
ade capacity for the investicated examples. 2esides thev de-
mand a computer with virtual storaae capacity.

The method of conjuaate GraAien+s has teo be reijected in the
case of bundle adjustment with self calibraticn, because con-
veraence cannot Se reached in everv case, even not if scalina
and preconditioning is anpliad.

Zetter results are obtained with CG at calculation of diai-
tal height models. Indeed band alaorithm was faster, espe-
ciallvy in the cases with only few reference noints, but con-
vergence couid be attained in all cases.

“ore storage capacitv is needed if calculatina with band
algorithm, because in case of CG cnly the non-zeros before
factorization are needed. But this point should nct be over-
estimated because today nearly all computers are equinpead
with disc storaae capacities.

The results obtained in this investication confirm the con-
ventional usaqe of band algorithm in bundle adjustment and
seem to be very important hecause this fact could not bhe an-
ticinated.
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